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SECTION1

INTRODUCTION

Oneway to lower the cost of aircraft is to improve the integra-
tion of avionics functions. Currently, there is considerable interest

in replacing the multiple flight-control sensors of a typical moderncom-

mercial aircraft with a skewedarray of strapdown inertial navigation

sensors, using redundant computers to perform multiple functions such as

flight control, air-data processing, and strapdown navigation. Net cost

has been shownto be less than for current nonintegrated systems. This

integrated avionics approach depends upon redundancy to achieve the re-

liability needed in flight-control loops. In order to achieve various

performance and economic improvements, the next generation of aircraft

will be designed to depend upon the flight-control avionics for flight

stability. Becauseflight-control-system reliability and safety depend

upon integrated avionics reliability, thorough analysis of skewed-sensor-

system reliability is therefore essential.

The objective of this study was to define and develop techniques

which will be the basis for failure-detection and isolation (FDI) algo-
rithms for a NASA-owneddual-fail/operational redundant strapdown iner-

tial navigation system. These techniques will provide the government

with the capability for testing and evaluating dual-fail/operational con-

cepts. The FDI techniques chosen include provisions for hard- and soft-

failure detection in the context of flight control and navigation. The

algorithms are of minimumcomplexity, suitable for flight testing. Anal-

yses were done to determine error-detection and switching levels for the

inertial navigation system, which is intended to be of 5- to 10-kilometer -'

(3- to 5-nautical-mile-) per-hour quality for a conventional takeoff



or landing (CTOL)operating environment. Analyses of false alarms are

also included for the FDI techniques developed, as are the analyses of

filters to be used in conjunction with FDI processing.

Two specific FDI algorithms were comparedin this study: the

Generalized Likelihood Test (GLT)and the EdgeVector Test (EVT). They

are comparedwith regard to:

(i) The systems of parity equations required for FDI.

(2) The ability to correctly detect and isolate failures.

(3) The possible thresholds and failure-detection levels.

(4) The need for dynamic thresholds.

(5) The development and evaluation of techniques for

generating these thresholds.

(6) The software requirements.

A deterministic digital computer simulation was used to compare

and evaluate the algorithms and FDI systems. The evaluation trajectory

used incorporates features typical of a transport aircraft flight pro-

file. Time histories of variables pertinent to the evaluation of the

algorithms were taken.

The report has the following general outline. A description of

the redundant sensor configuration is presented first. This is followed

by a general description of material used in the evaluation of the algo-

rithms, such as the simulation, instrument models, evaluation trajectory,

philosophy of FDI, and approach to generating the thresholds. An anal-

ysis of the two algorithms---EVT and GLT---follows, and a comparison of the

advantages and disadvantages of the algorithms is made.

The measurements reported in SI units were originally made in

English units and translated; the original units are given throughout the

report in parentheses.



SECTION2

THE SENSOR CONFIGURATION

(i)*
The inertial measurement unit (IMU) is a redundant strap-

down package employing four two-degree-of-freedom (TDOF) gyros

(accelerometers) in a semi-octahedral geometry. The instruments are

positioned such that the spin (pendulous) axes are normal to the four

faces of the semi-octahedron and point out. The two measurement axes

of the gyro lie in the plane of the face and are symmetric about the

face centerline. The IMU consists of two separate packages (faces 1

and 2, faces 3 and 4) which may be spatially separated along a track

in the YB direction. Thus, it may be treated as two tetradic IMUs.

It has been demonstrated (12) that FDI will be more effective if the

two tetradic IMUs are treated as a single IMU, and that approach is

taken here. (The effects of a large separation have not been addressed

in this work.)

Two axes systems are defined: the body frame (B) and the IMU

frame (M), as shown in Figures 1 and 2. The body frame is the conven-

tional x B (roll), YB (pitch), zB (yaw) axes system. The IMU frame is

a triad, with x M along the track separating the two tetrads and positive

toward the right wing and YM along the junction of IMUs 1 and 2, par-

allel to the vehicle centerline, and positive forward; zM completes the

triad.

Superscript numerals refer to similarly numbered items in the List of

References.
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Figure I. Body-axes system definition.

-z B, z M

^ ;,
S1

%,_%3

YB,XM

;,- X, 2" ,3

YB,XM

Figure 2. IMU instrument geometry.



Neglecting any mounting misalignments of the IMU, the rotation

from the body frame to the IMU frame may be represented by the matrix.

HB = 0

0 -

For an ideal system, with all misalignments identically zero,

the spin axes and pendulous axes are coincident with the outer normals

to the octahedron faces, as indicated in Figure 2.

The matrix H_ defines the nominal transformation from the IMU

frame (xM, YM' ZM) to the nonorthogonal spin axes (S l, ..., S4)

-i -I I"

-I 1 1

1 1 1

1 -I 1

^P is
The transformation from the IMU frame to the pendulous axes, HM,

defined by

^P 5 ^S
H M H M

^M yields
Postmultiplying by H B

-i -I

1 -i

1 1

-I 1

^m !

-i sli

^m i



and similarly for H B.^P Considering the octahedron as two IMUs, the spin

(pendulous) axes of IMUs 1 and 2 are represented by the top and bottom

halves of these matrices, respectively. Figure 3 also indicates this

separation.

IMUI_

x _Xo i,

r8

xo, OFFSET OF IMU FROM
VEHICLE CENTERLINE

x=, SEPARATION OF IMUl,2
FROM IMU CENTERLINE

XB, VEHICLE CENTERLINE

Separation of sensor

configuration into

two IMUs.

The ideal transformation from the IMU frame (XM' YM' ZM) to the

nonorthogonal sensor axes (AI' B1 ..... B4 ) may also be written as

/"

-,,q- l /_- 1 -2

_- 1 -,H- 1 -2

,_-z _+1 -2

-_- z -,,3+ l -2

/3+ 1 -/3+ 1 -2

-,,q+ 1 ,,q+ 1 -2

-v3+ l -V_- z -2

v3+i _-i -2

^

A 1
^

B 1

^

A 2
^

B 2

m -
^

A 3
^

B3 ,
^

A4 1
^

_B4]

6



with the accelerometer measurementaxes given by

^A ^G
HM - HM

Again, IMUs 1 and 2 are represented by the top and bottom halves of
_G respectively. The transformation from the body frame to the sen-M'
sor axes is given by

^A = _G 1
HB B = 2/3

/3- 1 -/3- 1 2

-vq-1 _-1 2

-/_+ 1 -/_- 1 2

-_+ i _+ i 2



SECTION 3

SIMULATION FEATURES AND INPUTS

The results of this study were obtained from a deterministic

digital simulation. A block diagram of this simulation is presented

in Figure 4 (References 2 and 3 should be consulted for a detailed

i
PROFILE H

G EN E RATOR AUTOPILOT

PILOT
INPUTS ACTUATORS

TURBULENCE

AIRCRAFT
NONLINEAR SIX-

DEGREE-OF-
FREEDOM

EQUATIONS:
NONLINEAR

AERODYNAMICS

.am

SKEWED SENSOR
ARRAYS:

TWO-
DEGREE-OF-

FREEDOM GYROS,
ACCELEROMETERS

Figure 4.

I F LIGHT-CONTROL
SYSTEM

I
I

FDI

ALGORITHM

I FLIGHT COMPUTER

]
I
I
I

l '1I
11 STRAPOOWN!1
I ILOCAL-VERTICAL-I I
I IWANOER'AZIMUTH I

I NAVIGATION II
I I ALGORITHM J I

L___ J

Simulation block diagram.
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description of its components). The core of the simulation is a six-

degree-of-freedom aircraft model with nonlinear aerodynamics. Also

modeled are a flight-control system and turbulence. An autopilot

"commands" the vehicle to follow a desired trajectory profile. Skewed

gyro and accelerometer sensor configurations are modeled with the

location of the sensors variable to permit an assessment of accelerom-

eter lever-arm effects. The sensors are assumed to be of navigation

quality and used for navigation and flight-control purposes. The FDI

algorithm operates on the sensor data to generate the input signals

to the flight-control and navigation systems. Navigation accuracy is

assessed by differencing the outputs of a strapdown local-vertical-

wander-azimuth navigation system model and the vehicle states.



SECTION4

INSTRUMENTMODELSANDFAILUREMODES

The instrument models contained in the simulation (2'3) are generic

in nature, with their parameters selected to provide a state-of-the-art

level of performance. The TDOFgyro models include the effects of mis-

alignment, bias, quantization, g, g×g, _xw and scale-factor errors, and

a lag. The accelerometer models include errors due to misalignment,

lag, bias, input-pendulous-axis cross-coupling, quantization, and scale-

factor linear and nonlinear effects. Tables 1 and 2 give the nominal
(4)

set of sensor parameters. The sensor error parameters are assumed

to be Gaussian distributed zero-mean random variables with Io values

equal to their nominal values. Block diagrams of the sensor models are

shown in Figures 5, 6, and 7 to illustrate the computations performed,

errors included, and the information flow. Only one axis of the TDOF

gyro is shown in Figures 6 and 7. A similar expression holds for the

other axis; the same TDOF error effects are applicable to both axes.

A further assumption is made regarding the error parameters of the TDOF

instruments used in this study. Based on the data presented in Refer-

ence 4, it is assumed that _ = 6 = 0.0. This assumption can

gj2 gj3

be modified to reflect the values of the actual instruments to be im-

plemented in the IMU.

Failure modes of TDOF instruments may be either single-degree-of-

freedom (SDOF) or TDOF in nature. An SDOF failure may be caused by any

part of the rebalance loop on a given axis (including software). The

i0



Table i. Two-degree-of-freedom gyro nominal parameters.

Parameter Value

Scale Factor

Bias

Scale-Factor Error

Misalignment Coefficients

g-Dependent Errors

2
g , gXg-Dependent Errors

_X_-Dependent Errors

Time Constant of Lag

1/1.57 pulses/s_

0.01°/h

20 ppm

50 _rad

0.005°/h/g

2
0.02°/h/g

12.4°/h/(rad/s)

0.003 s

Table 2. Accelerometer nominal parameters.

Parameter Value

Scale Factor

Bias

Scale-Factor Error

Misalignment Coefficients

Input-Pendulous Axes Acceleration

Sensitivity Coefficient

Input-Axis Acceleration-Squared

Sensitivity Coefficients

Time Constant of Lag

3280.8 pulses/m/s

(I000 pulses/ft/s)

50 ug

50 ppm

50 _rad

70 ug/g2

20 ug/g2

0.0002 s

ii
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high degree of correlation or coupling between the axes, caused by the

common wheel or pendulum, will propagate the failure into the second

axis in a short time. Therefore, when a failure is isolated, an entire

sensor is removed, regardless of the character of the failure.

Experience with dry TDOF instruments as a class indicates that

small performance shifts (such as bias changes turn-on to turn-on) are

the rule. Parameter shifts of larger magnitude are found only as catas-

trophic failures (such as wheel bearing or rebalance-loop failures).

Such failures, then, will be on the same order of magnitude as the in-

puts.

15



SECTION 5

EVALUATIONTRAJECTORY

Figure 8 showsthe 1-hour flight profile used to evaluate the

fault-tolerant system during the dynamic phases of the vehicle flight.

The profile includes features from a typical transport aircraft mission

profile: a climb to altitude, cruise, heading changes, descent, and a

loiter maneuver. Table 3 gives the details of the evaluation flight

trajectory.

90° HEADING
CHANGE

M = 0.65 /__ 10° HEADING

K / 1500,_ _,0 °HEADING

(5000 ft) 2900 s

M " 0.5
h = 1524m 3600s

(5000 ft)

Figure 8. Evaluation trajectory profile.
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Table 3. Evaluation trajectory description.

Time

(s)

0 - I00

i00 - 617

617 - 1,000

1,000 - 1,090

1,090 - 1,500

1,500 - 1,510

1,510 - 2,000

2,000 - 2,010

2,010 - 2,200

2,200 - 2,717

2,717 - 2,900

2,900 - 3,340

3,340 - 3,600

Event

Cruise

Ascent

Cruise

90 ° heading change

Cruise

i0 ° heading change

Cruise

I0 ° heading change

Cruise

Descent

Cruise

Loiter; one 360 ° turn

Cruise

Altitude

(m)

1,524

(5,000 ft)

6,477

(21,250 ft)

6,477

(21,250 ft)

6,477

(21,250 ft)

6,477

(21,250 ft)

1,524

(5,000 ft)

1,524

(5,000 ft)

Mach

Number

0.5

0.653

0.653

0. 653

0.653

0.5

0.5

The vehicle responses, as well as other system responses obtained

from the simulation using this trajectory, are presented in Figure 9 to

give an indication of how well the vehicle follows the commanded trajec-

tory and to show the magnitude of important rates and accelerations

obtained during the course of the mission. The trajectory commands are

also presented in this figure, as are the north and east ground veloci-

ties and latitude and longitude of the vehicle during the trajectory. A

nominal gust intensity of 1.83 meters (6 feet) per second was selected.

17
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Figure 9. System responses obtained for the dynamic trajectory

(sheet 1 of 4).
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Figure 9. System responses obtained for the dynamic trajectory

(sheet 3 of 4).
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As indicated in Figure 9, the vehicle is initially trimmed at an

altitude (h) of 1,524 meters (5,000 feet) and speed of mach (M) = 0.5.

After a 100-secondcruise at this flight condition, the vehicle begins to

climb and continues climbing for 517 seconds until it reaches an altitude

of 6,477 meters (21,250 feet) and a speed of M = 0.65. The flight-path

angle of the vehicle is 3 degrees and the rate of ascent 609.6 meters

(2,000 feet) per minute. The vehicle then cruises until 1,000 seconds

into the mission, at which time a heading change of 90 degrees is

commanded. The vehicle banks at 20 degrees, its nominal roll rate is

4.4 degrees per second, and its turn rate is approximately 1 degree per

second. Another period of cruising flight follows which is interrupted

by two 10-degree heading changes: one at 1,500 seconds and one at 2,000

seconds. The vehicle's bank angle, roll rate, and turn rate are the same

as for the 90-degree heading change. At 2,200 seconds, the vehicle

begins a descent to an altitude of 1,524 meters (5,000 feet) and M = 0.5.

The rate of descent is 609.6 meters (2,000 feet) per minute, and the

flight-path angle is -3 degrees. The vehicle then cruises at this flight

condition until 2,900 seconds, at which time one 360-degree turn is

commanded to simulate a loiter maneuver. Significant vehicle parameters

during the loiter are: a bank angle of 20 degrees, a roll rate of

approximately 4 degrees per second, and a turn rate of 0.75 degree per

second. At the end of the loiter, the vehicle cruises to complete the

1-hour trajectory.

The navigation errors obtained with a randomly selected set of

sensor errors for the redundant IMU are also presented in Figure 9. The

position errors are in the 1.85- to 3.70-kilometer- (i- to 2-nautical-

mile-) range, while the velocity errors are less than 2.29 meters

(7.5 feet) per second.
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SECTION6

THEFDI SYSTEM

Figure 10(5) is a block diagram of the baseline FDI system. The

system shownhere is mechanizedto detect and isolate three levels of
failure:

(i) Hard failures: those of a comparatively large magnitude,

which primarily affect flight-control performance.

(2) Midvalue failures: those of medium magnitude, which

affect pilot display performance.

(3) Soft failures: those of a comparatively small magnitude,

which affect navigation performance.

The major emphasis of this study was on the detection and isolation of

soft failures. Built-in-test-equipment (BITE) processing was not consi-

dered during this study, but indications are that it will be necessary to

detect simultaneous multiple failures.

The detection and isolation of sensor failures is accomplished by

processing the sensor outputs via a set of parity equations. The parity

equations are linear, constant-coefficient equations selected to remove

from the data the effect of the quantity which the sensors are measuring.

That is, the angular-rate information is removed from the gyro outputs

and the acceleration information is removed from the accelerometer

outputs. Only the effects of the uncertainties associated with the

sensors remain as parity-equation residuals. The parity-equation resi-

duals are then used to ascertain the presence or absence of a failure.
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Two techniques are explored in this study for detecting the presence of

(i)
a failure: the Edge Vector Test (EVT) and the Generalized Likelihood

(6-8)
Test (GLT).

SENSOR DATA

,,

COMPUTATION

OF

PARITY VECTOR

l 50 Hz , # 50 Hz

50 Hz

FIRST-ORDER LAG
FILTER

T90 = 1.0 $

, _ 25 Hz

SECOND-ORDER

FILTER

TgO = 15t

2 Hz

SOFT-FAILURE
DETECTION

HARD-FAILURE
DETECTION

MID-FAILURE

DETECTION

50 Hz

CONFIGURATION

CONTROL

,. _ 50Hz

NAVIGATION AND

FLIGH_CONTROL

SYSTEMS

Figure I0. FDI algorithm block diagram.

The parity-equation residuals are a function of the sensor errors,

sensor noise, etc., and the effect of the aircraft flight environment on

these uncertainties. When there is no failed sensor present, these

uncertainties define a baseline of FDI system operation. When a sensor

failure occurs, the value and statistics of the parity-equation residuals

change to reflect the presence of this failure. For example, a large

bias failure causes a step increase in the parity-equation residuals at
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the time of the sensor failure. A failure is detected when the parity-

equation residuals or a function of them exceeds a certain threshold. The

selection of the proper thresholds is a significant part of the design of

an FDI system. The basic problem is to select thresholds which allow the

detection and isolation of the smallest possible failures, ensuring the

best possible system performance while minimizing the probability of the

false detection of sensor failures due to sensor noise, quantization, etc.

Furthermore, the effects of the vehicle trajectory and the maneuvers

associated with it may require dynamic failure-detection thresholds since

the nominal values of the FDI system parity-equation residuals are larger

when the vehicle undergoes dynamic maneuvers.

Because they are of a large magnitude, hard failures are detected

using the raw sensor data and parity-equation residuals. A hard-failed

sensor must be removed in_nediately from the system to ensure a safe

flight. As the presence of less significant failures may be masked in the

raw sensor data or parity-equation residuals by the nominal sensor errors

and, in particular, by high-frequency sensor noise, quantization, etc.,

the parity-equation residuals are low-pass filtered to increase the ratio

of the sensor failure effect to the sensor noise and quantization effects.

For the mid- and soft-failure channels, the detection and isolation of a

failure is achieved in the same manner as with the hard-failure channel,

except that the filtered parity-equation residuals are used.

To detect moderate or midvalue failures, a first-order lag with a

fairly fast response is used. These failures are also of a large enough

magnitude that it is desirable to remove them as quickly as possible so

that system performance is not compromised. Heavier filtering, to

decrease the sensor background noise level even further, is used to

detect the smaller soft failures, as they can be tolerated for a longer

time before major disturbances to system performance show up. For the

baseline FDI system, the filter associated with the midvalue-failure

channel is a first-order lag with a time constant of 0.434 second (rise
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time to 90-percent response, T90 = 1.0 second). The filter associated
with the soft-failure channel is a second-order system (two first-order

lags in series) with T90 = 15 seconds. No significant benefits are
(9,10)

gained from the use of filters beyond second order.

FDI of the hard failures is performed at the sensor computation

rate, i.e., 50 Hz in this case. This is done so that the output data

from a hard-failed sensor can be disregarded before it can affect the

controllability of the air vehicle. The sampling rate for the mid- and

soft-failure channels can be done at a lower rate since the flight

controllability of the vehicle is not an issue for failures of these

magnitudes. The actual sampling rates used are not especially critical,

and the only requirement is that they be fast enough to be consistent

with the desired system performance; the mid-failure-channel sampling

rate should be faster than that of the soft-failure channel because

larger failures are being detected. Rates of 25 and 2 Hz were used for

the mid- and soft-failure channels, respectively.

It should be emphasized that because of the TDOF instruments in

this system, when a failure is isolated an entire sensor is removed even

if only a single-axis failure is detected. This ensures that the second

axis of a sensor, whose performance is highly correlated with the other

axis, will not degrade system performance.
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SECTION 7

THRESHOLD SELECTION

The technique used to deal with the problem of detecting faults at

acceptably low levels, while accommodating the effects of maneuvering

flight, was to implement thresholds composed of both constant and dynamic

quantities. The constant portion was included to account for the effects

of quantization and sensor noise during straight and level flight, while

the dynamic portion accounts for the effects due to maneuvering flight.

The approach implemented for computing the dynamic FDI thresholds

analytically duplicates the calculation of the failure-decision functions

using a derived expression for the upper bound of the sensor errors and

parity-equation residuals. Figure ii illustrates the procedure. Quanti-

zation effects and sensor noise are neglected as they are not easily

SENSOR I I SOLUTION OF
PARITY

OUTPUTS EQUATIONS

LAST VALUES
OF

ACCELERATIONS

AND

RATES

FILTERING

FILTERING _ DECISION

I _FUNCTION

COMPUTATION OF

MAXIMUM
SENSOR ERROR

AND

PARITY EQUATION
RESIDUAL

l ] FAILURECOMPARATOR OECISlON_

THRESHOLD ___

FUNCTION
THRESHOLD

Figure ii. Computation of dynamic thresholds.
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defined analytically and they are accounted for with the constant portion

of the threshold function. Furthermore, the filtering of the parity-

equation residuals attenuates the effects of quantization and sensor noise,

and the sensor error effects predominate during dynamic flight phases.

The derived expression used for the upper bound of the sensor

errors and parity-equation residuals is a function of the sensor error

model, the magnitude of the sensor errors, and the body-axes linear

accelerations and angular rates. The 3_ values of the sensor errors can

be used to develop a system suitable for operation with most sensors of

the type to be included in this system. However, these values can be

adjusted to achieve desired probabilities of false-alarm detection, etc.

The last-pass values of the body-axes linear accelerations or angular

rates calculated for the flight-control system are used in the generation

of the dynamic thresholds.

The angular rates and linear accelerations are filtered before

computation of the maximum sensor error and parity-equation residual for

the mid- and soft-failure channels. This reduces the noise level of the

signals caused by turbulence, sensor noise, etc., and results in accept-

able threshold levels for the detection of soft failures. Strictly

speaking, the sensor outputs should be filtered before the parity equa-

tions are solved. However, the parity equations are linear, and the

solution of the parity equations and the filtering operations are inter-

changeable. It is more efficient to filter the parity-equation residuals

since fewer filters are required.
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SECTION8

THEEDGEVECTORTEST (EVT)

8.1 Derivation

The parity equations and FDI algorithm for the redundant IMU are

derived in this section using an edge equation formulation. This formu-

lation is based on the projection of rates (or accelerations) measured

in two planes along the line of intersection of the planes. As the

measurement planes are orthogonal to the spin (or pendulous) axes, the

"edge vectors" are defined by the line mutually perpendicular to these

axes. For measurement planes i,j (j > i)

^

^ S. x S,

eij = UNIT (S i × Sj) = l ^)

Isi xsjl

For the geometry shown in Figure 2, _. may be tabulated as
x3

^

el2 lil [I [i]l ^ :__z ^ =__z

: _-2 el3 /2 -0 el4 _ -

I'l ['^ = ! o ^ z 1

e23 /-2 1 J e24 - _ 0

1^

e34 - 0]1

1

where the e.. are in body-frame coordinates.
z]
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Rates (accelerations) measured in the i and j planes may be com-

pared if they are expressed in a common frame. The frame chosen here is,

again, the body frame. Then the residual R.. may be expressed by
13

^B ^B ^B
R.. = (_. - wq) e.. (i)
x3 l 3 x3

If IRij I > T, an FDI threshold, then a miscompare flag, Fij,_ is set.

FDI consists of logical operations on the flags F...
l]

^B
Equation (i) is written in terms of m., the measurement vector

th 1
from the i plane transformed into body coordinates. In response to

^B th

a body rate (specific force) _B' the i measurement in the gyro frame

will be

^G
b3.
1

- T _, - ii

Bil

rm !
^_ |

H_ _ ^B
w B + i_i2

Bi2 [ !

i

_

where _G _Gare the corresponding rows of the matrix , and the _'s are

Bik B

uncertainties in the measurements, i.e., noise, sensor-error effects,

failure effects, etc. Independence of the components of _ may not be

assumed because of the high correlation of the failure modes of TDOF

instruments.

^G
_. is expressed in body coordinates by
l

E

^B _G I ^G I ^S ^G
• = I H I HB w,

_l Bil I Bi2 I i J l

^G = [vii 0] and are the compensated 40 orwhere, again, w i , wi2, vii, wi2

AV measurements in the i th plane.
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For example, consider the i,j = 1,2 measurementpair. In response
to an input _B = [_ , _ , _ ]T, we find

B x y z

^G 1
wI -

b_ - aw + 2w
x y z

-aw + b_ + 2_
x y z

0

_iI

+ _12

0

1

bw - a_ + 2w +
x y z Ell

-a_ + bw + 2w +x y z El2

where

a = /3+ 1

= /3-i

Eij = 2/3 _ij

Similarly

^G 1

w2 = 2/3

n m

ao_x
+ bw + 2w +

y z E21

-_ - _w + 2_ +
x y z E22

^G ^G

Given the measurements w I, _2 in the coordinates of their re-

spective frames, the data are transformed to the common body frame by
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^B [_G I ' ^S ]= I HGi2 1 HBHG. Bil I Ii i

]
b -a -2

-a b -2

2 2 -2

_B _ 1

G2 2/3 a -Y 2

b -a -2

2 2 -2

and

^B

w I

1

12

8Wx - 4Wy - 4w z + bEll - aEl2 1

-4w + 8w 4w z - aEll + _EI2
x y

-4w - 4w + 8w + 2Eli + 2E12x y z

^B 1

" 8w x + 4Wy + 4w z + aE21 - bE22

4w + 8w - 4w z + bE21 - aE22
x y

4w - 4w + 8w + 2E21 + 2E22x y z
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Then

RI2 : _ - w2 " el2

1
12/2

- 8wz + b(Ell + E22) - a(E21 + El2)

-8Wx+ a(E22 - Ell) + b(El2 - E21)

-8ex + 2(Eli + El2 - E21 - E22)

0 m

-i

1

1

r[_(EII _ El2 + E21 _ E22) ÷ 3(Eli ÷ El2 _ E21 _ En)]
I

12/2

1 [ a(_ll _ _22 ) + _(_
2/i

RI2 is independent of _B the input; it is a function of only the uncom-B'

pensated errors in the measurements. This is true in general for R. ,.
13

Each of the six residuals R., j > i, represents a comparison of
13

two instruments. If an instrument fails, the uncertainty vector asso-

ciated with it has a nonzero bias and all residuals R involving that
13

instrument will be affected; any residual not involving that instrument

will be unaffected. This provides a basis for a single-trial failure-

isolation technique. Only n-3 or 5 independent parity equations exist

for the redundant sensor configuration considered in this study. (6)

Therefore, one of the six parity equations is a linear combination of

the other five.

Assume a failure-isolation threshold, T, such that residuals ex-

ceeding T are deemed to represent failed instruments. Logical variables

can be defined which indicate a pass (false) or fail (true) of a single

paired comparison between the parity-equation residual and the threshold.

Thus
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IRij > T + Fij = true

Logical operations over F. then isolate the failure.
13

In a practical application, the six parity equations are solved at

the computation rate of the appropriate FDI channel. If fewer than two

of the residuals exceed the threshold, failure isolation is not performed.

This reduces the computational burden of the FDI system.

Consider instrument i. Construct the logical equation

G1 = (FI2 and FI3) or (FI2 and FI4) or (F13 and FI4)

If instrument 1 fails such that all of the residuals involving it exceed

the threshold, all FIj are true and G1 is true. A similar equation for
another instrument, say instrument 2, will be logically false, e.g.

G2 = (FI2 and F23) or (FI2 and F24) or (F23 and F34)

= (i • 0) + (i - 0) + (0 • 0)

= 0 (false)

The complete set of logical equations for four instruments is

G 1 = FI2FI3 + FI2FI4 + F13FI4

G 2 = FI2F23 + FI2F24 + F23F24

G 3 = FI3F23 + FI3F34 + F23F34

G 4 = FI4F24 + F14F34 + F24F34
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To isolate a second failure, given instrument i has failed

G .

3 FjkFj £

where i, j, k, £ is a cyclic permutation of i, 2, 3, 4. That is

Instrument 1 Instrument 2 Instrument 3 Instrument 4

Failed Failed Failed Failed

G 2 = F23F24 G 1 = FI3FI4 G 1 = FI2F14 G 1 = FI2FI3

G 3 = F23F34 G 3 = FI3F34 G 2 = FI2F24 G 2 = FI2F23

G 4 = F24F34 G 4 = FI4F34 G 4 = FI4F24 G 3 = FI3F23

A third failure, given i,j failed, may be detected by noting that Fk£ is

true, or that instruments k and £ miscompare.

The actual parity equations implemented in the simulation are in

terms of the body-axes components of the sensed quantities. Thus, for

the gyros the body-axes components of the sensed angular rates are

B

Wlx = 0.211325m - 0.788675m
gAl gBl

B

ely = -0.788675m + 0.211325m
gAl gBl

B

_iz = 0.577350(m + m )
gAl gBl

B

W2x = 0.788675m - 0.211325m
gA2 gB2

B

W2y = 0.211325m - 0.788675m
gA2 gB2

B

W2z = 0.577350(m + m ) (2)
gA2 gB2
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B = -0. 211325m + 0. 788675m
w3x gA3 gB3

Bw = 0.788675m - 0.211325m
3y gA3 gB3

B
W-z3 = 0. 577350(m + m )gA3 gB3

B
W-x4 = -0.788675m + 0.211325mgA4 gB4

B
W4y = -0.211325m + 0.788675mgA4 gB4

B = 0. 577350(m + m ) (2)
W4z gA4 gB4 (Cont.)

and the complete set of parity-equation residuals is

_ 1 (W_y B B _ B )
RI2 /_ - Wly + Wlz W2z

1 (_x B + B B_ - - Wly)
RI3 /-_ W3x W3y

1 (wB B B B
_ - - W4z)

RI4 /_ 4x Wlx + Wlz

1 (W2x B B B_ - - W3z)
R23 /_ W3x + W2z

1 (_2X B B B_ - - W4y)
R24 /_ W4X + W2y

1 (By3 B B B.... _4z ) (3)
R34 /_ W4y + W3z

A similar set of equations holds for the accelerometers, with appropriate

substitutions.
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8.2 FDI Sensitivity

The orientation of the sensors with respect to the vehicle body

axes and the resulting system of parity equations have a profound effect

on the magnitude of sensor failures which can be detected and isolated.

This aspect of the FDI problem for the redundant IMU sensor configura-

tion and the EVT is explored in this section. SDOF instrument failures

are assumed because it simplifies the discussion and gives insight into

the area of FDI sensitivity, and because failure modes of this nature

are a distinct possibility with TDOF gyros.

The parity equations attenuate the effect of a sensor failure, thus

reducing its magnitude in the parity-equation residuals. The degree to

which this occurs for the EVT algorithm is shown in Table 4, which gives

the factor by which each of the sensor outputs is attenuated for all pos-

sible sensor configurations and failures. Thus, for example, the effect

of a failure in instrument axis B1 will be attenuated by 0.258819 in

parity equation RI2, -0.707107 in parity equation RI3 , and 0.965926 in

parity equation RI4 for the four-instrument configuration. These are

only three parity equations affected by the failure of this instrument

axis. Table 4 was generated by substituting the equations for the com-

ponents of the edge vectors into the parity equations. Uniform detecti-

bility of the first failure exists with this algorithm since all of the

coefficients of Table 4 obtained for it are permutations of each other.

The effect of the attenuation of the sensor outputs by the parity

equations on the ability to detect and isolate failures is now considered.

Consider the case with four instruments and an A1 axis failure with magni-

tude f. The effect on RI2 will be 0.965926f, on RI3 will be 0.707107f,

and on RI4 will be 0.258819f. Axis A1 will be declared failed if both
I •

IRI2 I and IRI3 I are greater than T. Therefore, the minimum value of

A m

failure detected will be f = T/0.707107 = 1.414214T.

The ability to detect failures degrades for the second and third

failures; in certain instances, the magnitude of failure detected can

be f = T/0.258819 = 3.863704T. This occurs when detection of a failure
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Table 4. EVTalgorithm FDI sensitivity; coefficients of parity
equations.

Parity-Equation Residual

RI2 RI3 RI4 R23 R24 R34

Failed Failed

Sensors Axis

- A1 0. 965926

- B1 0. 258819

- A2 -0. 258819

- B2 -0.965926

- A3

- B3

- A4

- B4

1 A2

1 B2

1 A3

i B3

1 A4

1 B4

2 A1

2 B1

2 A3

2 B3

2 A4

2 B4

3 A1 0. 965926

3 B1 0. 258819

3 A2 -0. 258819

3 B2 -0. 965926

3 A4

3 B4

4 A1 O. 965926

4 B1 0. 258819

4 A2 -0.258819

4 B2 -0.965926

4 A3

4 B3

1,2 A3

B3

A4

B4

1,3 A2

B2

A4

B4

1,4 A2

B2

A3

B3

2,3 A1

B1

A4

B4

2,4 A1

B1

A3

B3

3,4 A1 O. 965926

B1 0. 258819

A2 -0. 258819

B2 -0. 965926

0.707107

-0.707107

0.707107

-0.707107

0.707107

-0.707107

0.707107

-0.707107

0.707107

-0.707107

0.707107

-0.707107

0.707107

-0.707107

0.707107

-0.707017

0.258819

0.965926

-0.965926

-0.258819

0.258819

0.965926

-0.965926

-0.258819

0.258819

0.965926

-0.965926

-0.258819

0.2'58819

0. 965926

-0. 965926

-0. 258819

0.965926

0.258819

-0.258819

-0.965926

0.965926

0.258819

-0.258819

-0.965926

0.965926

0.258819

-0.258819

-0.965926

0.965926

0.258819

-0.258819

-0.965926

0.707107

-0.707107

0.707107

-0.707107

0.707107

-0.707107

0.707107

-0.707107

0.707107

-0.707107

0.707107

-0.707107

0.707107

-0.707107

0.707107

-0.707107

0.965926

0.258819

-0.258819

-0.965926

0.965926

0.258819

-0.258819

-0.965926

0.965926

0.258819

-0.258819

-0.965926

0.965926

0.258819

-0.258819

-0.965926
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in instrument axis B2 is attempted after sensor 1 has failed and has

been removedfrom the cluster. Table 4 illustrates the degree to which

all of the possible sensor configurations are affected by the attenua-

tion of the sensor failures due to the parity equations.

Table 4 can also be used to provide qualitative information use-

ful in distinguishing the wrong isolation of failures whenthe EVT is

employed. This can be illustrated as follows. First, assumethat a

first failure is being detected and isolated. Then, assumethat the

A1 sensor axis fails with a magnitude just large enough so that the

parity-equation residual IRI2 I exceeds the threshold. If the failure

is large enough so that IRI31 exceeds the threshold, the A1 axes will
be declared to have failed and instrument 1 will be removedfrom the

cluster. However, if IRI31does not exceed the threshold, the possi-

bility for false isolation exists since the sensitivity coefficient

associated with the parity-equation residual IR231and a failure in
axis A2 is 0.965926. In a high-noise environment with low failure-

detection thresholds, it is possible for IR231 to exceed the threshold,
and A2 will be selected as the failure axis rather than AI. Other

sensor configurations that are prone to the wrong isolation of sensor
failures can be determined from Table 4 in the samefashion.

8.3 FDI Thresholds

The generation of the thresholds for the TDOF gyros is considered

first. An analytic expression for the output of the jth TDOF gyro is

required to implement the approach defined in Section 7. This expres-

sion may be obtained from a consideration of Figures 6 and 7. The ef-

fects of quantization and rectangular integration are neglected and

only first-order error terms are retained. The effects of the filtering

required for the mid- and soft-failure channels are not considered at

this point in the discussion. The resultant analytic expression for

the output of the jth TDOF gyro is
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IHG n + HG+ ggj9 Bjl x Bj2

H S . n + _B
Bjk I x jk2

n + H G

Y Bj3

S
n +H

Y Bjk 3

+ _ IH G p + H G

n18 _ Bkl Bk2
G )q + HBk 3 r

S . p + H SHBjk I Bjk 2

q + H S r_

Bjk3 !

where

j

k =

+ ( HG p + H G6n19 Bjl Bj2

(H_jkl " H Sp + Bjk 2

first input axis of instrument

I(AI), 3(A2), 5(A3), 7(A4)

second input axis of instrument

2(BI), 4(B2), 6(B3), 8(B4)

G )• q + HBj 3 r

q + H S r_

Bjk3

(4)

(Cont.)

When Eq. (4) is substituted into the parity equations the H G • p,

' Bjl

H G HG
B. " p' and r terms disappear• The parity-equation residuals
32 Bj3

are then a function of the sensor error terms only. An analytic expres-

sion for the bound of the sensor errors is needed to generate dynamic

thresholds for the parity-equation residuals. This expression may be

obtained by assuming worst-case conditions: IHG I = I_ [ = 1.0;

Bjk jkl

the signs of p, q, r and n , n , n and the elements of the geometry
x y z

matrices are such that all terms add; a bound for the sums of these
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terms is given by the sumof their absolute values; and the sensor

errors are additive and boundedby their 3_ values. These assumptions

lead to the following expression for an upper bound of the TDOFgyro
errors

+ _ (InxI + Inyl + InzI)g£m

+ 6gnm(inxI + iny I + inzl )2

+ 6n (IPl + lqI + Irl) 2]
m

(5)

By comparing this expression to Eq. (4), it is evident the 6 is an

g£m

upper bound for 6 + _ + 6 , _ is an upper bound for 6 +

gjl gj2 gj3 gnm gj4

+ 6 + _ + _ , and _ is an upper bound for 6 + 6 •

gj6 gj7 gj8 gj9 nm nj8 nj9

Equation (5) is now used to generate an analytic expression for

the upper bound of the parity-equation residuals. This is done by noting

that the maximum value of the body-axes components of the sensed angular

rates, given by Eq. (2), is

B
w = 2 (0. 577350)m

gm gm

Furthermore, the upper bound of the parity-equation residual is given by

R = 0. 707107 (4.0w B )

m gm
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The final expression for the thresholds for the gyro parity equation for
the hard-failure channel is

T = T + 3.266 _ (6)
gh g0h gm

since only the sensor error terms remain. T is the constant portion
g0h

of the threshold, which accounts for quantization, sensor noise, etc.

The absolute value of the parity-equation residual is compared
to the output of Eq. (6) to ascertain whether a failure has occurred.

Under normal operating conditions, with unfailed sensors present in

the system, this threshold will not be exceeded. The dynamic portion

of the failure-detection threshold is generated in real time using the

last values of the angular rates and linear accelerations generated

for the flight-control system.

Equation (6) is valid for the hard-failure channel in which no

filtering of the signals is done. T is large relative to the dynamic

g0h

portion of the threshold because of the significant effects of quanti-

ration. Modifications must be made to Eq. (6) for the detection of mid

and soft failures. In order to make a valid comparison between the

parity-equation residuals and the thresholds, it is necessary to filter

each in an identical manner. When the effects of p, q, r and n , n , n
x y z

on the sensor errors are linear, these signals can be filtered before the

expression for the upper bound is derived. Thus, IPfl + lqfl + Irfl can be

used in lieu of IPl + lql + Irl in Eq. (6). However, when the effects of

these quantities are nonlinear, an expression for the upper bound of the

nonlinear effect must be generated and then filtered. An example of this

is with regard to the (Inxl + Inyl + Inzl)2 term. When filtering is pres-
2

ant, this term is bounded by [(Inxl + Inyl + Inzl) ]f and not by

([nxf I + Inyfl + Inzfl) 2
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The expression for the dynamic thresholds can be modified further

to take advantage of the sensor configuration geometry to lower the mini-
mumlevel of failure which can be detected. Consider the soft-failure

channel. If the filtering is heavy enough so that the effects of quanti-

zation can be neglected, the constant for the soft-failure-detection

threshold can be set equal to zero, so that the smallest possible failure

can be detected. The level of soft failure which can be detected will

then be governed by the dc value of the dynamic thresholds. The value

is due in part to _ , but arises mainly from the effect of the normal

gm

acceleration level of z-i g encountered during straight and level flight

on the acceleration-dependent errors, i.e., the 6 Inzl and _ .,Inzl2
g£m gnm

terms of Eq. (5). For the sensor configuration under consideration, the

terms of the input and spin sensor geometry matrices affecting n are
z

0.577350 (H_m , H_km , and H S ). Therefore, improved soft-failure-
93 3 Bjk3

detection capability can be achieved by using ]0.577350n I in lieu of
z

Inz] in the analytic expression for the threshold. This has the effect

of lowering the dc value of the dynamic threshold and therefore the

level of soft TDOF gyro failure which can be detected.

Incorporating into Eq. (5) and (6) the conclusions just drawn

regarding the effect of filtering and sensor geometry on the thresholds

leads to the following expression for the upper bound of the TDOF gyro

errors and the failure-detection thresholds

fn = <DT. _)II + (pgm + e )(Ipf] + lqfl + Irfl)
gm f gm gm

+ 6g£m(Inxfl + Inyfl + 10.577350nzf[)

+ _gnm[(Inxl + Inyl + ]0.577350nz I)2]

+ 6nm [(IP[ + [q[ + Irl) 2]f I

T = T + 3. 266

g go gmf
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The minimum ideal level of gyro failure which can be detected

with the EVT algorithm may be obtained from Eq. (7) and (8). Straight

and level unaccelerated flight in nonturbulent air is assumed along

with heavy filtering in the soft-failure-detection channel. These

assumptions imply that n = n = p = q = r = T = 0.0 and n = -i.0 g.
x y go z

using the _ values of the sensor errors leads to T = 0.453 degree per

gs

hour. As is shown in Section 8.5, this threshold can be decreased under

penalty of an increased probability of the false detection of failures.

The actual value of soft failure which can be detected depends upon

the value of the failure-detection sensitivity coefficient presented

in Table 4. The smallest failure detected will be 0.453/0.707107 =

0.640 degree per hour.

A similar development has been carried out to determine an ex-

pression for the accelerometer FDI system thresholds.

eter output is obtained from Figure 5 and is given by

m (DT G_)IH A n + H A A= • • n +H n

a _ Bjl x Bj2 y Bj3 z3

The jth accelerom-

+ _a n + _ - n + U n+ la x y z
3 jl aj2 aj3

(HA HA z)
n + n + . n

+ eaj Bjl x Bj2 y

where

J

(H_J1
HA

+ _IPj n +x Bj2

H P P• n HB
Bjl x j2

+ BI • n + HB
Ij x 92

n +@ nz)Y Bj3

)n + H B n
Y j3 z

n + H A

Y Bj3

= 1,2, ..., 8 = AI,BI, .... B4
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Performing the samesimplifications and steps as in the case of the gyros
leads to the following expression for the upper bound of the accelerom-

eter error

amf am m
+ 0. 577350nzfl)

+I8II m + eipm)[(Inxl + Iny I + I0-577350nzi) 2] If

Strictly speaking, since _aj 3 in the equation for ma.3is not multiplied
by H_B the misalignment error coefficient used to obtain _a must be

j3' m

divided by 0.577350. This was not done during this study.

The final expression for the accelerometer threshold is then given

by

T = T + 3.266m

a a 0 a
mf

The minimum level of accelerometer threshold attainable for the

EVT algorithm is 1350 micro-g for straight and level unaccelerated

flight in nontuzbulent air. The smallest actual accelerometer failure

which can be detected because of the failure-detection sensitivity of

the algorithm is 1350 micro-g/0.707107 = 1909 micro-g. This value may

be adjusted downward under the penalty of an increased probability of

false alarm as is discussed in Section 8.5.

One additional important conclusion can be drawn regarding the

thresholds determined for the EVT. The thresholds are not a function

of the number of instruments in the configuration. This means that

the lower failure-detection sensitivity evident in Table 4 for a con-

figuration with fewer sensors in the cluster is not compensated for

by a corresponding lowering of the failure-detection thresholds.
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8.4 Simulation Results

This section presents and discusses the results obtained with

the simulation described in Section 3 for the EVT algorithm. Presented

are time histories of the parity-equation residuals and failure-detection

thresholds obtained using the equations and techniques presented pre-

viously. Time histories were obtained for two vehicle trajectories:

the maneuvering trajectory, which is presented in Figure 8, and straight

and level unaccelerated flight, which was taken to gain a better under-

standing of the FDI capability of the EVT without the effects of maneuvers.

Figure 12 shows the value of one of the parity-equation residuals

obtained. The top half of the figure shows the residual R24 unfiltered,

lagged with the filter used for the midvalue-failure channel, and passed

through the second-order filter used for the soft-failure channel. The

unfiltered parity-equation residual is random in nature due to the effect

of the sensor quantization. Its peak value is in the vicinity of 258

degrees per hour. Filtering reduces the magnitude of the parity-equation

residuals as evidenced by these variables for the mid- and soft-failure

channels. The magnitude of these signals is indicative of the level of

sensor failure which can be detected in each of these channels.

The corresponding parity-equation residuals obtained for the

maneuvering-flight trajectory are also shown in Figure 12. The un-

filtered residual corresponds very closely in character and magnitude

to that obtained for the maneuvering trajectory. The vehicle maneuvers

have no apparent effect on this parameter. The effect of the maneuvers

on the lagged midchannel parity-equation residual is also minor at most.

A slight increase in magnitude at some point in the trajectory occurred

as evidenced by the change in scale from that obtained for the non-

maneuvering trajectory. This point, however, does not occur in Figure 12,

since only the data points at 1-second intervals are plotted, although

each calculated point is used to set the scale.

The effect of the vehicle maneuvers is very evident in the soft-

failure-channel parity-equation residual. The magnitude of the signal

obtained with the maneuvering trajectory is on the order of four times
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Figure 12. TDOF gyro parity-equation residuals:

EVT, no sensor failure.
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that obtained for straight and level flight. This dictates the need

for dynamic failure-detection thresholds. If a constant threshold were

used, it would have to be large enough to account for the effect of all

of the possible maneuvers that the vehicle would undergo. This, how-

ever, would compromise the failure-detection capability of the system

during straight and level flight since the thresholds would be much

larger than required. A much more appealing solution is to adopt the

approach advocated in this report of having thresholds which are con-

stant during straight and level flight but which also include the terms

affected by the dynamics of the vehicle so as to account for these effects.

Typical hard, mid, and soft accelerometer FDI system parity-equation

residuals are presented in Figure 13 for both the straight and level and

maneuvering trajectories. The residual R23 is the particular one shown.

The hard-failure-channel residual is random in nature and of the same

magnitude for both trajectories. This randomness is of course due to

quantization. The magnitude of this residual is also quite small, indi-

cating that the level of hard failure which can be detected will also be

quite small.

The soft-failure-channel residuals are constant for nonmaneuvering

flight. The maneuvers have very little effect on these variables. The

constant portion arises because of the effect of the l-g steady-state

normal acceleration on the sensor errors. This implies that constant

thresholds may be suitable for the soft-failure-detection channel and

for the whole accelerometer FDI system.

The mid-failure-channel parity-equation residuals are just less

heavily filtered versions of the soft-failure-channel parity-equation

residuals. They have a slightly larger magnitude because of the higher

noise level. Since the magnitude of the hard-failure-channel parity-

equation residuals is so small and the soft-failure-channel residuals

are so much cleaner, the need for a mid-failure channel is not apparent

for the accelerometers.

The threshold levels obtained for the EVT algorithm with the

technique outlined in Section 8.3 are now presented and discussed.
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Figure 13. Accelerometer parity-equation residuals:

EVT, no sensor failure.
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The first item that must be addressed is the selection of the constant

portion of the thresholds included to account for quantization, etc.

Based upon the data presented in Figures 12 and 13, as well as those

data obtained for other simulation runs, the constant thresholds given

in Table 5 were selected. The constant portion of the thresholds for

the soft-failure channels was set at zero so that the smallest possible

failures could be detected.

Table 5. Constant thresholds for the EVT algorithm.

Instrument Channel Threshold

Gyro

Accelerometer

Hard

Mid

Soft

Hard

Soft

227 °/h

20.63°/h

O.O°/h

6019 ug

0.0 ug

The EVT gyro thresholds are presented in Figure 14 for both maneu-

vering and nonmaneuvering flight. The hard-failure- and mid-failure-

channel thresholds are basically the same for both trajectories, with the

level dictated by the constant portion of the threshold. The effects of

the maneuvers are not really evident, except for the soft-failure channel

where the threshold is an order of magnitude larger for the maneuvering

trajectory than for straight and level flight. The soft-failure-detection

threshold for level flight is in the vicinity of 0.7 degree per hour.

This value defines the level of FDI capability which can be expected

with the EVT, and it is slightly larger than the ideal value mentioned

in Section 8.3. One of the reasons for this discrepancy is the effect

of a nonzero steady-state value of n . This was neglected in arriving
x

at the ideal value and accounts for a 10-percent difference. Further-

more, the vehicle is continually excited by turbulence during the tra-

jectory, which increases the level of the threshold. During flight in

nonturbulent air, the level of the soft-failure-detection threshold
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Figure 14. TDOF gyro failure-detection thresholds: EVT.
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closely approximates the ideal value. The fact that the minimum level

of the soft-failure-detection threshold is less than the maximum value

of the soft-failure-channel parity-equation residual shown in Figure 12

dictates the need for dynamic thresholds.

The accelerometer thresholds are presented in Figure 15. These

thresholds reflect the conclusions drawn previously concerning the accel-

erometer parity-equation residuals. No mid-failure-channel threshold is

shown. The maneuvers have only a slight impact on the soft-failure-

detection threshold. The level of the hard-failure-detection threshold

is quite low, dictated by the sum of the constant value of the thresholds

given in Table 5 and the soft-failure-detection threshold shown in Fig-

ure 15.

8.5 Probabilit_ of False Alarm

In this section, a simplified analysis is carried out to arrive

at an upper bound for the probability of the false detection of the first

soft sensor failure using the EVT algorithm. This reflects an effort to

determine the degree to which the nominal value of the soft-failure-

detection theshold can be lowered to achieve better navigation-system

performance without significantly degrading the system because of false

alarms. Assume that the vehicle is flying straight and level in a low-

turbulence environment. A simplified expression for the gyro sensor

error, obtained from Eq. (4), which is valid under these assumptions is

= ( _--_--)[_ - (0- 577350) _gjimgj DT • 180 gj

+ (0.577350)2<6 + 6 + 6 + 6 + 6 ) + _]
gj4 gj6 gj7 gj8 gj9

where n is assumed to be zero-mean Gaussian noise with standard deviation

The sensor errors are assumed to be Gaussian distributed variables
n"
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with la values equal to the nominal values given in Table i. This

leads to the following result

_ ) 2 a2)2 = DT • 180 (0.000330555 +

a_gj

since the variance of the total is equal to the sum of the variances.

A continued analysis leads to the result that the variance of the errors

of the body-axes components of the sensed angular rates is

2 2
a_ = 0.666666o ~

m

gj

and that the variance of the parity-equation residuals is

2 2

a R = 2.0 _~w
g

= 1.33333 DT • 180 (0.000330555 + o_)

The declaration of a false failure requires that two parity-

equation residuals exceed the threshold simultaneously. There are 12

ways in which this can occur, as is evident from the FDI equations

given in Section 8. Since the parity-equation residuals are each

Gaussian random variables, the probability of two of them exceeding

a threshold simultaneously is governed by a joint Gaussian probability

density function. Furthermore, the joint density function is highly

correlated since noise in one sensor output can affect two parity-

equation residuals simultaneously.

Rather than tackling the approach just described, which is very

complicated, a simplified approach to the problem was pursued and

an upper bound for the probability of false alarm determined. In
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doing this, it must be realized that the probability of one parity-

equation residual exceeding the threshold is greater than the probability

of that residual and any other residual exceeding the threshold. That

is, P(IRjkl > T) _ P(IRijl > T and I_£I > T). Since there are 12 ways
for a false alarm to occur, and the probability of a parity-equation

residual is the samefor each residual, the probability of the false

detection of the first sensor failure is given by

PFA --< 12P(IRijl _> T)

The probability of exceeding a given threshold level is obtained

from a table of Gaussian probability distribution function values. The

two-sided value must be used since the threshold can be exceeded both

positively and negatively.

Figure 16 shows the values of the thresholds obtained as a func-

tion of the sensor noise level and the ratio of the threshold level to

the standard deviation of the parity-equation-residual noise. Also

presented in this figure is the upper bound for the probability of false

alarm as a function of the ratio Tg/O R The value of the nominal soft-
g

failure-detection threshold was given in Section 8.3 as 0.453 degree per

hour. This value is also indicated in Figure 16 so that its probability

of false alarm can be evaluated.

A similar analysis has been carried out for the accelerometers.

The results are presented in Figure 17.
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SECTION 9

THE GENERALIZED LIKELIHOOD TEST (GLT)

9.1 Description

The GLT algorithm is briefly described in this section. Consider

first the hard-failure channel. In the absence of sensor failures, the

measurement equation is

^ ^A ^

m = He + D (9)

A set of parity equations is defined by

where

^^

VH = 0

^^

p = Vm (i0)

V is assumed to be of dimension (n - 3) x n.

so that

^

The matrix V can be chosen

_T = I

Substituting Eq. (9) into Eq. (I0) yields

^^

DN = V_

59



^

In the absence of sensor failures, PN depends only on the measurement

noise. If sensor j experiences a bias-type failure of magnitude f, and

that failure is manifest as an apparent bias shift of magnitude b in

measurement j, then

^ ^^ ^

PF = V_ + v b
3

^

The difference in the statistics of PN (in the absence of failures) and
^

PF (in the presence of failures) provides a basis for detecting and iso-

lating failures. The problems of detecting and isolating sensor failures

fall within the general framework of composite hypothesis tests, since

the sign as well as the magnitude of the bias failure is unknown a priori.

A GLT formation of the detection and isolation problems has been

developed. Assume single-axis failures initially. The GLT decision

functions for detection and isolation are

^T ^

DF D = P P (Ii)

^T^j)p v

DFI ^T ^ , j = 1,2 ..... n (12)
] v.v.

3 3

These decision functions are strictly functions of the parity-equation

residuals, p. The detection decision is made by comparing DF (which is
D

the sum of the squares of the parity-equation residuals) to a detection

threshold. A sensor failure results in a change in the mean value of

a sensor output, the parity-equation residuals, and the failure-detection

function. The isolation decision is then made by determining maxj(DF I .)"
3

The value of j that maximizes DFI. identifies the sensor that is most
]

likely to have failed.
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The preceding discussion assumesa set of n SDOFinstruments.

The extension to TDOFsensors requires certain modifications to reflect
the characteristics of these instruments. (6)"" Correlation between the

noise present in the two measurements derived from a TDOF sensor is

possible. One approach is to assume no correlation, design the FDI

algorithms accordingly, and examine the degradation of FDI performance

which occurs due to the presence of the nonzero values of correlation.

This approach leads to the simplest algorithms and is preferred when

the performance penalty incurred for nonzero values of correlation is

acceptably small. In this case, the detection problem formulation is

not changed, and the appropriate decision function is given by Eq. (ii).

In formulating the isolation problem, another characteristic of

TDOF sensors must be considered. A TDOF sensor failure may be reflected

in either or both of its measurement axes. In practice, a failure ob-

served in either axis is sufficient to disqualify the data from both of

the sensor axes. Thus, isolation of a failed sensor rather than of a

failed axis is sufficient. The isolation problem then involves testing

only n/2 hypotheses. The GLT decision function for isolation which

corresponds to Eq. (12) is

AT^ --1̂T^
DF I = P V.( ) V p j = 1,2 ..... n/2 (13)

] 3 3 ]
]

^ ^ ^ ^ ^ ^

where V.] = [v2j -l'v2j] and v2j_l, v2j are the two columns of the V

matrix associated with TDOF sensor j.

The detection and isolation of the mid and soft failures is ac-

complished using the same decision functions as for the hard-failure

channel. The only exception is that the appropriately filtered parity-

equation residuals are used in lieu of the unfiltered ones.

The determination of the performance probabilities for the GLT

algorithm such as the probability of false alarm, missed detection, etc.,

is a complex analytic task. For this reason, it was not carried out
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under this study for the sensor configuration of interest. A qualitative

approach was employed instead as discussed in Section 9.2. The analytic

technique for generating these probabilities is demonstrated in Refer-

ences 6 and 7 for sensor configurations other than the one discussed here.

9.2 Parity Equations

The GLT algorithm requires sets of parity equations with the

properties defined in Section 9.1. The parity-equation sets are obtained

via an algorithm specified in Reference Ii using a least-squares approach.

One set of equations is needed for each possible potential sensor con-

figuration because of the reconfiguration of the sensor cluster follow-

ing instrument failures. Tables 6 and 7 provide information concerning

the number of sensors, number of parity-equation sets needed, and equa-

tions within each set. The sensor configurations to which these sets

Table 6. GLT parity-equation information.

Number of Number of
Instruments

Instruments Parity Equations

4 1,2,3,4

1,2,3

2,3,4

3,4,1

4,1,2

1,2

2,3

3,4

4,1

1,3

2,4

5

3
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Table 7. Parity-equation matrices for GLTalgorithm.

I 0.79056 0.0
-0.15811 -0.43197 0.15811 -0.31623 -0.15811 0.11575 [

J 0.0
0.79056 0.11575 -0.15811 -0.31623 0.15811 -0.43197 -0.15811 I Four Instruments

I 0.0 0.0

I 0.0 0.0

I 0.0 0.0

I
I

0.76590 -0.06528 -0.08277 -0.53507 0.19585 -0.27862 I

0.0 0.63964

0.0 0.0

Three Instruments

0.16322 -0.42451 -0.58442 0.20607 1

| in-_t r--_e nt'-'-sl

10.68301 0.18301 -0.18301 -0"68301 I Tw° Adjacent j

Two Instruments-Separated

I 0.5 -0.5 0.5 -0.5 I

of parity equations apply is also given. Thus, four systems of parity

equations are needed to detect the first two failures. A single system

of parity equations is applicable to the four-instrument cluster. A

single system of parity equations is applicable to all possible sets of

three-instrument groups since they are rotations of each other. Two

systems of parity equations are needed for the two-instrument-sensor

clusters: one when the two instruments are adjacent to each other and

the other when the instruments are opposite each other.

Several assumptions have been made in the following discussion

for purposes of convenience. When the three-instrument configuration is

considered, it is assumed that the unfailed instruments are I, 2, and

3 and that instrument 4 has failed. Similarly, the pairs 1,2 and 1,3

are used for the two-instrument configurations. All of the other pos-

sible two- and three-instrument configurations are rotations or per-

mutations of these and involve just a renumbering of the sensors.

Assumptions are also made with regard to the particular axis within a

configuration which fails. The results are applicable to other axes

as well because of the reordering which can be done.

The systems of parity equations applicable to the redundant IMU

considered in this study are presented in Table 7. The set of parity

equations for the three-instrument configurations and the parity equa-

tion for the two-adjacent-instrument configurations are subsets of the

63



five parity equations for the four-instrument IMU. The parity equation
for the case where the two instruments are opposite each other is also

presented in Table 7. Becauseof the symmetryof this configuration,

the equation is the sum and difference of the instrument measurements

multiplied by a constant.

The failure-decision function associated with the GLT algorithm

is the sum of the squares of the parity-equation residuals (see Eq. (ii)).

A measure of the ability of this algorithm to detect failures is given

by the square root of the sum of the squares of the coefficients of the

columns of the parity-equation matrix. The failure-decision function

is the square of the just-mentioned number times the magnitude of the

failures squared (for perfect instruments). Thus, the smaller the value

of this number, the greater the magnitude of a detectable failure re-

quired for a given value of failure-detection threshold.

The values of the failure-detection sensitivity coefficients or

square root of the sum of the squares of the elements of a column of

the parity-equation matrix are presented in Table 8 for the redundant

IMU. From the information contained in this table, it is evident that

the first failure is uniformly detectable because of the syrmnetry of

Table 8. GLT failure-detection sensitivity.

Number of

Instruments

4

3

2 (adjacent)

2 (separated)

A1 B1

0.7906 0.7906

0.7659 0.6430

0.6830 0.1830

O.5 O.5

A2

0.7906

0.7071

0.1830

Failed Axis

B2 A3 B3

0.7906 0.7906 0.7906

0.7071 0.6430 0.7659

0.6830 - -

- 0.5 0.5

A4 B4

0.7906 0.7906
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the instrument cluster.

detectability constraint

^

The columns of the V matrix satisfy the uniform

^T ^ n - 3
v v. - j = 1,2 ..... n
3 3 n

The failures associated with the three-instrument clusters are also fairly

uniformly detectable, although the magnitude of failure which can go

undetected is larger for three instruments than it is for four. When

failure detection for the two-instrument clusters is considered, it is

once again evident that a failure larger than that needed in the three-

or four-instrument cases has to occur before it is detected. In the

majority of cases, the magnitude of failure which will be detected is

approximately the same. The only case where a disparity exists is when

it is necessary to detect a failure in the two inner axes when two ad-

jacent sensors remain. In this instance, the failure must be 4.3202

times larger than the failure magnitude detected for the first failure.

The GLT failure-isolation decision function is given by Eq. (12)

for single-axis failures and by Eq. (13) for TDOF failures. The failed

sensor is chosen to be the one corresponding to the largest failure-

isolation coefficient. The incorrect isolation of a sensor failure arises

from the presence of sensor noise, which could cause the isolation co-

efficient corresponding to a sensor axis other than the failed one to be

largest.

The GLT algorithm failure-isolation sensitivity may be examined

by comparing the normalized magnitudes of the failure-isolation coeffi-

cients for different failed-instrument axes. A measure of the ability of

the GLT algorithm to isolate failures correctly and not to select the

wrong sensor as having failed is given by the ratio of the largest isola-

tion coefficients for a given failure.
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The values of the failure-isolation coefficients obtained for the

redundant IMU configuration with the GLTalgorithm are presented in

Table 9 for the four-instrument and three-instrument sensor configurations.

It is only possible to detect (not isolate) a failure with two instru-

ments, so the two-instrument case was not considered; single-axis fail-

ures are assumed. A similar exercise could be carried out for dual-axis

failures via Eq. (13), but this has not been done so that a comparison
could be drawn with the corresponding material in Section 9.

Table 9. GLTfailure-isolation coefficients for single-axis failure.

Coefficient
of

Isolation
Function

A1

B1

A2
B2

A3

B3

A4

B4

Four
Instruments

A1

0.625

0.0

0.025

0.1866

0.025

0. i00

0.025

0.013

A1

0.587

0.006

O.OO8

0.336

0.05_

0.077

Failed Axis

Three Instruments

B1 A2 B2 A3 B3

0. 004

0.413

0. 0241

0.112

0. 362

0.038

0. 007

0. 029

0. 500

0.020

0.135

0. 286

0. 286

0.135

0.020

0. 500

0. 029

0.007

0.038

0.362

0.112

0.0241

0.413

0.004

0.007

O.O54

0.336

O.OO8

0.006

0. 587

w

The ability to correctly isolate the first axis failure for the

four-instrument configuration should be quite good since the ratio of

the second largest isolation coefficient to the largest is 0.2986. How-

ever, the ability to correctly isolate failures is degraded for the

three-sensor configuration. For example, difficulties may arise, in-

correctly isolating axis B1 as having failed since the ratio of the
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isolation coefficient for axis A3 to that of axis B1 is 0.8765. Axis

A3 maybe falsely chosen as the failed instrument axis in a noisy en-

vironment. Other potential difficulties in isolation which may arise
are betweenaxes A1 and B2 whenaxis A1 has failed and between axis A2

and B3 whenaxis A2 has failed. The samedifficulty also arises if the
other sensor fails in the previous cases.

9.3 FDI Thresholds

The thresholds used with the GLT algorithm are generated using

a method very similar to that used for the EVT algorithm. They also

consist of a constant portion and a dynamic portion. The dynamic

thresholds are again generated from an analytic expression for the upper

bound of the sensor errors and parity-equation residuals. However, the

failure-decision function is different for the two algorithms and this

is reflected in the generation of the dynamic thresholds. For the EVT

algorithm, the parity-equation residuals are compared directly to the

thresholds for failure detection. With the GLT algorithm, the failure-

decision function is the sum of the squares of the parity-equation

residuals.

Consider the development of the thresholds for the TDOF gyros.

Equation (7) is still valid for the upper bound of the TDOF gyro errors.

The parity-equation residuals are given by

n

Pgi = _Vij mgj

j=l

i = 1,2,...,n - 3

The residuals are a function of the sensor errors only because of the
^

manner in which the V matrix was selected.
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An upper bound for p is
gi

P
gm mgmf Ivijl

j=l m

The failure-decision function is

n-3

DFD = _ 2g Pgi
i=l

Therefore, an upper bound for DF
D
g

is given by

2
T = (n- 3) p

g gm

= (n- 3) mgmf IVi jl 1

]=1 m i

(14)

The constant portion of the threshold is added to this when it is neces-

sary to account for quantization and sensor noise as in the hard-failure

channel.

A similar expression results for the accelerometer thresholds,

except that m is used instead of m

amf gmf"

One significant conclusion which can be drawn regarding the GLT

thresholds is that they are a function of the number of parity equations.

Thus, when fewer sensors are present, fewer parity equations are required,

and the thresholds can be lowered to compensate for the lower failure-

detection sensitivity which occurs when this happens.

68



The minimumlevel of failure which can be detected with the GLT

algorithm can be determined from Eq. (14) to provide a comparison with

the value obtained for the EVTalgorithm. Under the assumptions of

straight and level flight, etc., the nominal thresholds obtained for the
GLTalgorithm are

T : (0.660°/h)
gs

T = (1967 ug)as

The actual values of the first failure detected are obtained by modify-

ing these values by the failure-detection sensitivity. These values are

0.835 degree per hour for the gyros and 2488micro-g for the accelerom-
eters.

9.4 Simulation Results

The failure-decision functions obtained with the GLT algorithm

for both the nonmaneuvering and maneuvering trajectories are presented

in Figure 18 for the gyros and Figure 19 for the accelerometers. The

conclusions that can be drawn regarding these variables and the GLT FDI

system are the same as those that were drawn regarding the EVT parity-

equation residuals and algorithms presented in Section 8.4. They are

not repeated here.

The failure-detection thresholds obtained for the GLT algorithm

are presented in Figure 20 for the gyros and in Figure 21 for the accel-

erometers. The constant portions of the thresholds used to account for

high-frequency effects are the same ones used for the EVT algorithm pre-

sented in Table 5. The threshold levels obtained for the hard- and mid-

failure channels with the GLT algorithm are the same as those obtained

with the EVT algorithm. The soft-failure detection levels are slightly
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Figure 18. TDOF gyro failure-decision functions:

GLT, no sensor failure.
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Figure 19. Accelerometer failure-decision functions:

GLT, no sensor failure.
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Figure 20. TDOF gyro failure-detection thresholds: GLT.
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Figure 21. Accelerometer failure-detection thresholds: GLT.
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greater for the GLT algorithm, with the base level being =i.0 degree

per hour for the gyros and =1966 micro-g for the accelerometers. This

conclusion reinforces a similar conclusion concerning the relative values

of the ideal failure-detection levels of the GLT and EVT algorithms.

The 1-degree-per-hour soft-failure-detection level is greater than the

ideal level of 0.66 degree per hour. Without turbulence, this level was

lowered to 0.71 degree per hour.
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SECTIONi0

A COMPARISONOFTHEEVTANDGLTALGORITHMS

A comparison maybe drawn between the EVTand GLTalgorithms based

upon the results presented in this report. There are advantages and

disadvantages to both approaches.

Consider first the failure-detection capability of the two algo-

rithms: uniform detectability of the first failure exists with both

algorithms. The level of failure detected was the same for both systems

for the hard- and mid-failure channels. At first glance, the results of

Sections 8.3 and 9.3 imply that the edge-vector approach results in a

slightly better soft-failure-detection capability for the first sensor

failure. For example, the level of first failure which can be detected

is 0.64 degree per hour for the EVT and 0.835 degree per hour for the GLT.

This comparison is not quite fair, however, in that the performance of

the FDI system is not considered. The probability of correct detection,

missed alarm, etc., has not been taken into account. Therefore, a

comparison based on the thresholds obtained directly via the technique

presented can be misleading.

In addition, for a given threshold, smaller failures are detected

with the GLT algorithm. Furthermore, the thresholds for the GLT algo-

rithm decrease as a function of the number of good instruments remaining

in the cluster and the number of parity equations. This is not true for

the thresholds associated with the EVT algorithm. The failure-detection

sensitivity for both the GLT and EVT algorithms lessens with fewer

instruments remaining in the cluster. For the thresholds determined in
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this study, it can easily be shownthat it is then possible to detect

smaller failures with the GLTalgorithm than with the EVTalgorithm when

fewer sensors are present in the cluster. Consider the case of detecting

the third failure. For the GLTalgorithm, the ideal threshold will be

reduced by _ (see Eq. (13)) to a value of 0.295 degree per hour, since

only one parity equation is used. The ideal threshold for the EVT

algorithm remains the same. The minimumfailure-detection sensitivity is

0.1830 for the GLTalgorithm and 0.2558819 for the EVTalgorithm. There-

fore, the largest third failure not detected by the GLTalgorithm is

1.612 degrees per hour, while failures up to 1.749 degrees per hour may

go undetected with the EVTalgorithm.

Additional qualitative comparisons of the FDI capability possible

with the EVT and GLT algorithms can be made from a consideration of

Sections 8.2 and 9.2. The FDI capability associated with the GLT algo-

rithm has the advantage of being more uniform, particularly for the first

and second failures. This is based on the failure-detection sensitivity

coefficients presented in Tables 4 and 8. It is only when the third

failure is being detected that a small failure-detection sensitivity

occurs for the GLT algorithm. In contrast, a small failure-detection

sensitivity occurs when detection of the second failure with the EVT

algorithm is attempted.

It also appears that the GLT is superior to the EVT with regard to

the wrong isolation of single-axis failures. This conclusion comes from

a consideration of Tables 4 and 9 and the discussion associated with them.

The probability of the wrong isolation of a failure should be less for

the GLT algorithm than for the EVT algorithm because of the large differ-

ence in the magnitude of the isolation coefficients given in Table 9.

For the EVT, the probability of wrong failure isolation appears to be

much greater as indicated by the discussion in Section 8.2. It _s only

with the isolation of the second failure that the GLT appears vulnerable

to wrong isolation, but the EVT also suffers in this regard. It is felt

that the GLT algorithm is superior to the EVT algorithm in its ability to

correctly isolate the second failure.
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The EVTalgorithm appears to have an advantage in terms of

computer memoryrequired. The GLTalgorithm requires that different

sets of parity equations be stored. In addition, the switching logic

that goes along with the selection of the proper set of equations and

the ordering of the sensors associated with the use of these equations

could be quite complex. The EVT is very straightforward from this

point of view. However, computer memoryis rarely a limiting factor
with regard to system software. The major limitation arises because of

the throughput required with repetitive calculations. It is on this

basis that the software requirements of the two algorithms will be

judged. The two algorithms appear to be about equal in this respect.

The two algorithms also have the ability to detect TDOF failures.

The EVT is transparent to most TDOF failures as both axes are included

in any parity equation using a given sensor. For the GLT, the failure-

decision function is the same for SDOF and TDOF failures. However,

different failure-isolation decision functions exist as given by Eq. (12)

and (13).

In the case of a null failure, where a sensor yields a zero

output, both algorithms should function properly and detect and isolate

the correct failure. This has been demonstrated via simulation. The

reason that this is true is that the basic property of a parity-equation
^^

system, i.e., VH = 0, no longer holds. The introduction of a null

failure may be looked upon as the introduction of a failure of the

opposite sign and magnitude equal to the parity-equation element times

the failed-sensor output. For example, the first parity equation for the

GLT algorithm may be written as

Pl = Vllml + V12m2 + "'" + Vlnmn

If m I fails (goes to zero) the Vllm I term disappears. This may also be

interpreted as the introduction into the system of a failure of magni-

tude -Vllm I. A failure of this magnitude is large enough that detection

and isolation should be relatively easy.
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SECTIONii

SUMMARYANDCONCLUSIONS

The major result of this study was the demonstration of the

feasibility of performing FDI for the redundant IMU of interest in an

air-transport-vehicle environment. Acceptable performance was obtained

for a range of failures from hard (or extremely large ones) downthrough

the soft ones which affect the navigation performance of the system. The

detection and isolation of failures downto the range of 0.5 degree per

hour for the gyros and 1500 micro-g for the accelerometers was clearly
demonstrated.

In addition, a methodology wasdeveloped for the design and

evaluation of fault-tolerant systems for the redundant IMU. This method-

ology can be used as a baseline for the development of a more refined

algorithm which considers the specific characteristics of the instruments

to be used in the actual system and the physical separation of the
componentsof the IMUas they will actually be implemented in the vehicle.

The development of failure-detection thresholds was a major

consideration in the development of the FDI system. The need for dynamic

failure-detection thresholds was demonstrated, particularly for the

soft-failure gyro FDI channel. An algorithm was developed for the
generation of these thresholds as a function of the vehicle environment.

The thresholds consist of a constant portion to account for high-frequency

sensor noise and a dynamic portion to account for the effects of vehicle

dynamics.
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The FDI system for the gyros could possibly require only constant

thresholds for the hard- and mid-failure channels. The capability for
the channels was shownto be _250 degrees per hour for the hard failures

and _36 degrees per hour for the mid-value failures. Dynamicthresholds

are needed for the soft-failure channel, with detectability in the range

of 0.5 to 0.7 degree per hour possible. It was not possible to give an

advantage to either algorithm since the probabilities of FDI system
performance were not accounted for.

The accelerometer FDI system has its own unique characteristics.

Constant thresholds could quite possibly be used for the whole system.

Since the hard-failure-detection level is low (_8000micro-g), the need

for a mid-failure channel is moot. A soft-failure-detection capability

in the vicinity of 1500micro-g was demonstrated.

The GLTand EVTalgorithms were comparedfrom the standpoint of

their FDI capability. Approximately the samefailure-detection capa-
bility was achieved with both algorithms. However, the GLThas an

advantage with regard to the detection of the second and third soft

failures, since the thresholds for this algorithm decrease as a function

of the number of sensors remaining in the system. This helps to offset

the decrease in failure-detection sensitivity which comesabout with

fewer sensors. It was also shownthat the failure-detection sensitivity
of the GLTalgorithm is more uniform than that of the EVT. The GLT

algorithm also has an advantage over the EVTalgorithm with regard to the

ability of the algorithm to correctly isolate a sensor failure. Finally,

it should be noted that both the algorithms will be unaffected by most
credible TDOFsensor failure modes. The sameis true for null failures.

The EVTalgorithm will require less computer memorythan the GLT

algorithm. This is not a major advantage, however, since computer

throughput is the limiting factor in software design and implementation.
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